
5.4

down a short pipe as it would to get down a pipe 3 km long. This, again, is an experimental verification of the special theory
of relativity.

Figure 5.12 The electric field lines of a high-velocity charged
particle are compressed along the direction of motion by length
contraction, producing an observably different signal as the
particle goes through a coil.

Check Your Understanding A particle is traveling through Earth’s atmosphere at a speed of 0.750c. To
an earthbound observer, the distance it travels is 2.50 km. How far does the particle travel as viewed from the
particle’s reference frame?

5.5 | The Lorentz Transformation

Learning Objectives
• Describe the Galilean transformation of classical mechanics, relating the position, time,

velocities, and accelerations measured in different inertial frames

• Derive the corresponding Lorentz transformation equations, which, in contrast to the Galilean
transformation, are consistent with special relativity

• Explain the Lorentz transformation and many of the features of relativity in terms of four-
dimensional space-time

We have used the postulates of relativity to examine, in particular examples, how observers in different frames of reference
measure different values for lengths and the time intervals. We can gain further insight into how the postulates of relativity
change the Newtonian view of time and space by examining the transformation equations that give the space and time
coordinates of events in one inertial reference frame in terms of those in another. We first examine how position and
time coordinates transform between inertial frames according to the view in Newtonian physics. Then we examine how
this has to be changed to agree with the postulates of relativity. Finally, we examine the resulting Lorentz transformation
equations and some of their consequences in terms of four-dimensional space-time diagrams, to support the view that the
consequences of special relativity result from the properties of time and space itself, rather than electromagnetism.

The Galilean Transformation Equations
An event is specified by its location and time (x, y, z, t) relative to one particular inertial frame of reference S. As an
example, (x, y, z, t) could denote the position of a particle at time t, and we could be looking at these positions for many
different times to follow the motion of the particle. Suppose a second frame of reference S′ moves with velocity v with

respect to the first. For simplicity, assume this relative velocity is along the x-axis. The relation between the time and
coordinates in the two frames of reference is then

x = x′ + vt, y = y′, z = z′.

Implicit in these equations is the assumption that time measurements made by observers in both S and S′ are the same.

That is,

t = t′.
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These four equations are known collectively as the Galilean transformation.

We can obtain the Galilean velocity and acceleration transformation equations by differentiating these equations with
respect to time. We use u for the velocity of a particle throughout this chapter to distinguish it from v, the relative velocity
of two reference frames. Note that, for the Galilean transformation, the increment of time used in differentiating to calculate
the particle velocity is the same in both frames, dt = dt′. Differentiation yields

ux = ux′ + v, uy = uy′ , uz = uz′

and

ax = ax′ , ay = ay′ , az = az′ .

We denote the velocity of the particle by u rather than v to avoid confusion with the velocity v of one frame of reference
with respect to the other. Velocities in each frame differ by the velocity that one frame has as seen from the other frame.
Observers in both frames of reference measure the same value of the acceleration. Because the mass is unchanged by the
transformation, and distances between points are uncharged, observers in both frames see the same forces F = ma acting

between objects and the same form of Newton’s second and third laws in all inertial frames. The laws of mechanics are
consistent with the first postulate of relativity.

The Lorentz Transformation Equations
The Galilean transformation nevertheless violates Einstein’s postulates, because the velocity equations state that a pulse of
light moving with speed c along the x-axis would travel at speed c − v in the other inertial frame. Specifically, the spherical

pulse has radius r = ct at time t in the unprimed frame, and also has radius r′ = ct′ at time t′ in the primed frame.

Expressing these relations in Cartesian coordinates gives

x2 + y2 + z2 − c2 t2 = 0

x′2 + y′2 + z′2 − c2 t′2 = 0.

The left-hand sides of the two expressions can be set equal because both are zero. Because y = y′ and z = z′, we obtain

(5.5)x2 − c2 t2 = x′2 − c2 t′2.

This cannot be satisfied for nonzero relative velocity v of the two frames if we assume the Galilean transformation results
in t = t′ with x = x′ + vt′.

To find the correct set of transformation equations, assume the two coordinate systems S and S′ in Figure 5.13. First

suppose that an event occurs at (x′, 0, 0, t′) in S′ and at (x, 0, 0, t) in S, as depicted in the figure.

Figure 5.13 An event occurs at (x, 0, 0, t) in S and at
(x′, 0, 0, t′) in S′. The Lorentz transformation equations relate

events in the two systems.

Suppose that at the instant that the origins of the coordinate systems in S and S′ coincide, a flash bulb emits a spherically

spreading pulse of light starting from the origin. At time t, an observer in S finds the origin of S′ to be at x = vt. With

the help of a friend in S, the S′ observer also measures the distance from the event to the origin of S′ and finds it to be
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x′ 1 − v2 /c2. This follows because we have already shown the postulates of relativity to imply length contraction. Thus

the position of the event in S is

x = vt + x′ 1 − v2 /c2

and

x′ = x − vt
1 − v2 /c2

.

The postulates of relativity imply that the equation relating distance and time of the spherical wave front:

x2 + y2 + z2 − c2 t2 = 0

must apply both in terms of primed and unprimed coordinates, which was shown above to lead to Equation 5.5:

x2 − c2 t2 = x′2 − c2 t′2.

We combine this with the equation relating x and x′ to obtain the relation between t and t′ :

t′ = t − vx/c2

1 − v2 /c2
.

The equations relating the time and position of the events as seen in S are then

t = t′ + vx′/c2

1 − v2 /c2

x = x′ + vt′
1 − v2 /c2

y = y′
z = z′.

This set of equations, relating the position and time in the two inertial frames, is known as the Lorentz transformation.
They are named in honor of H.A. Lorentz (1853–1928), who first proposed them. Interestingly, he justified the
transformation on what was eventually discovered to be a fallacious hypothesis. The correct theoretical basis is Einstein’s
special theory of relativity.

The reverse transformation expresses the variables in S in terms of those in S′. Simply interchanging the primed and

unprimed variables and substituting gives:

t′ = t − vx/c2

1 − v2 /c2

x′ = x − vt
1 − v2 /c2

y′ = y
z′ = z.

Example 5.6

Using the Lorentz Transformation for Time

Spacecraft S′ is on its way to Alpha Centauri when Spacecraft S passes it at relative speed c/2. The captain of

S′ sends a radio signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz transformation to find the

time interval of the signal measured by the communications officer of spaceship S.

Solution
a. Identify the known: Δt′ = t2′ − t1′ = 1.2 s; Δx′ = x′2 − x′1 = 0.

b. Identify the unknown: Δt = t2 − t1.

208 Chapter 5 | Relativity

This OpenStax book is available for free at http://cnx.org/content/col12067/1.9



c. Express the answer as an equation. The time signal starts as ⎛
⎝x′, t1′⎞

⎠ and stops at ⎛
⎝x′, t2′⎞

⎠. Note

that the x′ coordinate of both events is the same because the clock is at rest in S′. Write the first

Lorentz transformation equation in terms of Δt = t2 − t1, Δx = x2 − x1, and similarly for the primed

coordinates, as:

Δt = Δt′ + vΔx′/c2

1 − v2

c2

.

Because the position of the clock in S′ is fixed, Δx′ = 0, and the time interval Δt becomes:

Δt = Δt′

1 − v2

c2

.

d. Do the calculation.
With Δt′ = 1.2 s this gives:

Δt = 1.2 s

1 − ⎛
⎝
1
2

⎞
⎠
2

= 1.6 s.

Note that the Lorentz transformation reproduces the time dilation equation.

Example 5.7

Using the Lorentz Transformation for Length

A surveyor measures a street to be L = 100 m long in Earth frame S. Use the Lorentz transformation to obtain an

expression for its length measured from a spaceship S′, moving by at speed 0.20c, assuming the x coordinates

of the two frames coincide at time t = 0.

Solution
a. Identify the known: L = 100 m; v = 0.20c; Δτ = 0.

b. Identify the unknown: L′.

c. Express the answer as an equation. The surveyor in frame S has measured the two ends of the stick
simultaneously, and found them at rest at x2 and x1 a distance L = x2 − x1 = 100 m apart. The

spaceship crew measures the simultaneous location of the ends of the sticks in their frame. To relate
the lengths recorded by observers in S′ and S, respectively, write the second of the four Lorentz

transformation equations as:

x′2 − x′1 = x2 − vt

1 − v2 /c2
− x1 − vt

1 − v2 /c2

= x2 − x1

1 − v2 /c2
= L

1 − v2 /c2
.

d. Do the calculation. Because x′2 − x′1 = 100 m, the length of the moving stick is equal to:

L′ = (100 m) 1 − v2/c2

= (100 m) 1 − (0.20)2

= 98.0 m.

Note that the Lorentz transformation gave the length contraction equation for the street.
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Example 5.8

Lorentz Transformation and Simultaneity

The observer shown in Figure 5.14 standing by the railroad tracks sees the two bulbs flash simultaneously at
both ends of the 26 m long passenger car when the middle of the car passes him at a speed of c/2. Find the
separation in time between when the bulbs flashed as seen by the train passenger seated in the middle of the car.

Figure 5.14 An person watching a train go by observes two bulbs flash simultaneously at opposite ends
of a passenger car. There is another passenger inside of the car observing the same flashes but from a
different perspective.

Solution
a. Identify the known: Δt = 0.

Note that the spatial separation of the two events is between the two lamps, not the distance of the lamp
to the passenger.

b. Identify the unknown: Δt′ = t2′ − t1′ .

Again, note that the time interval is between the flashes of the lamps, not between arrival times for
reaching the passenger.

c. Express the answer as an equation:

Δt = Δt′ + vΔx′/c2

1 − v2 /c2
.

d. Do the calculation:

0 =
Δt′ + c

2(26 m)/c2

1 − v2 /c2

Δt′ = −26 m/s
2c = − 26 m/s

2⎛
⎝3.00×108 m/s⎞

⎠

Δt′ = −4.33×10−8 s.

Significance

The sign indicates that the event with the larger x2′, namely, the flash from the right, is seen to occur first in the

S′ frame, as found earlier for this example, so that t2 < t1.

Space-time
Relativistic phenomena can be analyzed in terms of events in a four-dimensional space-time. When phenomena such as the
twin paradox, time dilation, length contraction, and the dependence of simultaneity on relative motion are viewed in this
way, they are seen to be characteristic of the nature of space and time, rather than specific aspects of electromagnetism.

In three-dimensional space, positions are specified by three coordinates on a set of Cartesian axes, and the displacement of
one point from another is given by:

210 Chapter 5 | Relativity

This OpenStax book is available for free at http://cnx.org/content/col12067/1.9



⎛
⎝Δx, Δy, Δz⎞

⎠ = (x2 − x1, y2 − y1, z2 − z1).

The distance Δr between the points is

Δr2 = (Δx)2 + ⎛
⎝Δy⎞

⎠
2 + (Δz)2.

The distance Δr is invariant under a rotation of axes. If a new set of Cartesian axes rotated around the origin relative to the

original axes are used, each point in space will have new coordinates in terms of the new axes, but the distance Δr′ given

by

Δr′2 = (Δx′)2 + ⎛
⎝Δy′⎞

⎠
2 + (Δz′)2.

That has the same value that Δr2 had. Something similar happens with the Lorentz transformation in space-time.

Define the separation between two events, each given by a set of x, y, z¸ and ct along a four-dimensional Cartesian system
of axes in space-time, as

⎛
⎝Δx, Δy, Δz, cΔt⎞

⎠ = ⎛
⎝x2 − x1, y2 − y1, z2 − z1, c(t2 − t1)⎞

⎠.

Also define the space-time interval Δs between the two events as

Δs2 = (Δx)2 + ⎛
⎝Δy⎞

⎠
2 + (Δz)2 − (cΔt)2.

If the two events have the same value of ct in the frame of reference considered, Δs would correspond to the distance Δr
between points in space.

The path of a particle through space-time consists of the events (x, y, z¸ ct) specifying a location at each time of its motion.
The path through space-time is called the world line of the particle. The world line of a particle that remains at rest at
the same location is a straight line that is parallel to the time axis. If the particle moves at constant velocity parallel to the
x-axis, its world line would be a sloped line x = vt, corresponding to a simple displacement vs. time graph. If the particle

accelerates, its world line is curved. The increment of s along the world line of the particle is given in differential form as

ds2 = (dx)2 + ⎛
⎝dy⎞

⎠
2 + (dz)2 − c2 (dt)2.

Just as the distance Δr is invariant under rotation of the space axes, the space-time interval:

Δs2 = (Δx)2 + ⎛
⎝Δy⎞

⎠
2 + (Δz)2 − (cΔt)2.

is invariant under the Lorentz transformation. This follows from the postulates of relativity, and can be seen also by
substitution of the previous Lorentz transformation equations into the expression for the space-time interval:

Δs2 = (Δx)2 + ⎛
⎝Δy⎞

⎠
2 + (Δz)2 − (cΔt)2

=
⎛

⎝
⎜Δx′ + vΔt′

1 − v2 /c2

⎞

⎠
⎟

2

+ ⎛
⎝Δy′⎞

⎠
2 + (Δz′)2 −

⎛

⎝
⎜
⎜c

Δt′ + vΔx′
c2

1 − v2 /c2

⎞

⎠
⎟
⎟

2

= (Δx′)2 + ⎛
⎝Δy′⎞

⎠
2 + (Δz′)2 − (cΔt′)2

= Δs′2.

In addition, the Lorentz transformation changes the coordinates of an event in time and space similarly to how a three-
dimensional rotation changes old coordinates into new coordinates:

Lorentz transformation Axis – rotation around z-axis
(x, t coordinates): (x, y coordinates):
x′ = (γ)x + ⎛

⎝−βγ⎞
⎠ct x′ = (cos θ)x + (sin θ)y

ct′ = (−βγ)x + (γ)ct y′ = (−sin θ)x + (cos θ)y

where γ = 1
1 − β2

; β = v/c.

Lorentz transformations can be regarded as generalizations of spatial rotations to space-time. However, there are some
differences between a three-dimensional axis rotation and a Lorentz transformation involving the time axis, because of
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differences in how the metric, or rule for measuring the displacements Δr and Δs, differ. Although Δr is invariant under

spatial rotations and Δs is invariant also under Lorentz transformation, the Lorentz transformation involving the time axis

does not preserve some features, such as the axes remaining perpendicular or the length scale along each axis remaining the
same.

Note that the quantity Δs2 can have either sign, depending on the coordinates of the space-time events involved. For pairs

of events that give it a negative sign, it is useful to define Δτ2 as −Δs2. The significance of Δτ as just defined follows

by noting that in a frame of reference where the two events occur at the same location, we have Δx = Δy = Δz = 0 and

therefore (from the equation for Δs2 = − Δτ2⎞
⎠:

Δτ2 = − Δs2 = (Δt)2.

Therefore Δτ is the time interval Δt in the frame of reference where both events occur at the same location. It is the same

interval of proper time discussed earlier. It also follows from the relation between Δs and that Δτ that because Δs is

Lorentz invariant, the proper time is also Lorentz invariant. All observers in all inertial frames agree on the proper time
intervals between the same two events.

Check Your Understanding Show that if a time increment dt elapses for an observer who sees the
particle moving with velocity v, it corresponds to a proper time particle increment for the particle of dτ = γdt.

The light cone

We can deal with the difficulty of visualizing and sketching graphs in four dimensions by imagining the three spatial
coordinates to be represented collectively by a horizontal axis, and the vertical axis to be the ct-axis. Starting with a
particular event in space-time as the origin of the space-time graph shown, the world line of a particle that remains at rest at
the initial location of the event at the origin then is the time axis. Any plane through the time axis parallel to the spatial axes
contains all the events that are simultaneous with each other and with the intersection of the plane and the time axis, as seen
in the rest frame of the event at the origin.

It is useful to picture a light cone on the graph, formed by the world lines of all light beams passing through the origin event
A, as shown in Figure 5.15. The light cone, according to the postulates of relativity, has sides at an angle of 45° if the time

axis is measured in units of ct, and, according to the postulates of relativity, the light cone remains the same in all inertial
frames. Because the event A is arbitrary, every point in the space-time diagram has a light cone associated with it.

Figure 5.15 The light cone consists of all the world lines
followed by light from the event A at the vertex of the cone.

Consider now the world line of a particle through space-time. Any world line outside of the cone, such as one passing from
A through C, would involve speeds greater than c, and would therefore not be possible. Events such as C that lie outside the
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light cone are said to have a space-like separation from event A. They are characterized by:

ΔsAC
2 = (xA − xB)2 + (xA − xB)2 + (xA − xB)2 − (cΔt)2 > 0.

An event like B that lies in the upper cone is reachable without exceeding the speed of light in vacuum, and is characterized
by

ΔsAB
2 = (xA − xB)2 + (xA − xB)2 + (xA − xB)2 − (cΔt)2 < 0.

The event is said to have a time-like separation from A. Time-like events that fall into the upper half of the light cone occur
at greater values of t than the time of the event A at the vertex and are in the future relative to A. Events that have time-like
separation from A and fall in the lower half of the light cone are in the past, and can affect the event at the origin. The region
outside the light cone is labeled as neither past nor future, but rather as “elsewhere.”

For any event that has a space-like separation from the event at the origin, it is possible to choose a time axis that will
make the two events occur at the same time, so that the two events are simultaneous in some frame of reference. Therefore,
which of the events with space-like separation comes before the other in time also depends on the frame of reference of
the observer. Since space-like separations can be traversed only by exceeding the speed of light; this violation of which
event can cause the other provides another argument for why particles cannot travel faster than the speed of light, as well as
potential material for science fiction about time travel. Similarly for any event with time-like separation from the event at
the origin, a frame of reference can be found that will make the events occur at the same location. Because the relations

ΔsAC
2 = (xA − xB)2 + (xA − xB)2 + (xA − xB)2 − (cΔt)2 > 0

and

ΔsAB
2 = (xA − xB)2 + (xA − xB)2 + (xA − xB)2 − (cΔt)2 < 0.

are Lorentz invariant, whether two events are time-like and can be made to occur at the same place or space-like and can be
made to occur at the same time is the same for all observers. All observers in different inertial frames of reference agree on
whether two events have a time-like or space-like separation.

The twin paradox seen in space-time

The twin paradox discussed earlier involves an astronaut twin traveling at near light speed to a distant star system, and
returning to Earth. Because of time dilation, the space twin is predicted to age much less than the earthbound twin. This
seems paradoxical because we might have expected at first glance for the relative motion to be symmetrical and naively
thought it possible to also argue that the earthbound twin should age less.

To analyze this in terms of a space-time diagram, assume that the origin of the axes used is fixed in Earth. The world line of
the earthbound twin is then along the time axis.

The world line of the astronaut twin, who travels to the distant star and then returns, must deviate from a straight line path
in order to allow a return trip. As seen in Figure 5.16, the circumstances of the two twins are not at all symmetrical. Their
paths in space-time are of manifestly different length. Specifically, the world line of the earthbound twin has length 2cΔt,
which then gives the proper time that elapses for the earthbound twin as 2Δt. The distance to the distant star system is

Δx = vΔt. The proper time that elapses for the space twin is 2Δτ where

c2 Δτ2 = − Δs2 = (cΔt)2 − (Δx)2.

This is considerably shorter than the proper time for the earthbound twin by the ratio

cΔτ
cΔt = (cΔt)2 − (Δx)2

(cΔt)2 = (cΔt)2 − (vΔt)2

(cΔt)2

= 1 − v2

c2 = 1
γ .

consistent with the time dilation formula. The twin paradox is therefore seen to be no paradox at all. The situation of the
two twins is not symmetrical in the space-time diagram. The only surprise is perhaps that the seemingly longer path on the
space-time diagram corresponds to the smaller proper time interval, because of how Δτ and Δs depend on Δx and Δt.
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Figure 5.16 The space twin and the earthbound twin, in the
twin paradox example, follow world lines of different length
through space-time.

Lorentz transformations in space-time

We have already noted how the Lorentz transformation leaves

Δs2 = (Δx)2 + ⎛
⎝Δy⎞

⎠
2 + (Δz)2 − (cΔt)2

unchanged and corresponds to a rotation of axes in the four-dimensional space-time. If the S and S′ frames are in relative

motion along their shared x-direction the space and time axes of S′ are rotated by an angle α as seen from S, in the way

shown in shown in Figure 5.17, where:

tanα = v
c = β.

This differs from a rotation in the usual three-dimension sense, insofar as the two space-time axes rotate toward each other
symmetrically in a scissors-like way, as shown. The rotation of the time and space axes are both through the same angle.
The mesh of dashed lines parallel to the two axes show how coordinates of an event would be read along the primed axes.
This would be done by following a line parallel to the x′ and one parallel to the t′ -axis, as shown by the dashed lines. The

length scale of both axes are changed by:

ct′ = ct 1 + β2

1 − β2; x′ = x 1 + β2

1 − β2.

The line labeled “v = c” at 45° to the x-axis corresponds to the edge of the light cone, and is unaffected by the Lorentz

transformation, in accordance with the second postulate of relativity. The “v = c” line, and the light cone it represents, are

the same for both the S and S′ frame of reference.
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Figure 5.17 The Lorentz transformation results in new space
and time axes rotated in a scissors-like way with respect to the
original axes.

Simultaneity

Simultaneity of events at separated locations depends on the frame of reference used to describe them, as given by the
scissors-like “rotation” to new time and space coordinates as described. If two events have the same t values in the unprimed
frame of reference, they need not have the same values measured along the ct′-axis, and would then not be simultaneous

in the primed frame.

As a specific example, consider the near-light-speed train in which flash lamps at the two ends of the car have flashed
simultaneously in the frame of reference of an observer on the ground. The space-time graph is shown Figure 5.18. The
flashes of the two lamps are represented by the dots labeled “Left flash lamp” and “Right flash lamp” that lie on the light
cone in the past. The world line of both pulses travel along the edge of the light cone to arrive at the observer on the ground
simultaneously. Their arrival is the event at the origin. They therefore had to be emitted simultaneously in the unprimed
frame, as represented by the point labeled as t(both). But time is measured along the ct′-axis in the frame of reference of

the observer seated in the middle of the train car. So in her frame of reference, the emission event of the bulbs labeled as t′
(left) and t′ (right) were not simultaneous.
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Figure 5.18 The train example revisited. The flashes occur at the same time
t(both) along the time axis of the ground observer, but at different times, along
the t′ time axis of the passenger.

In terms of the space-time diagram, the two observers are merely using different time axes for the same events because
they are in different inertial frames, and the conclusions of both observers are equally valid. As the analysis in terms of the
space-time diagrams further suggests, the property of how simultaneity of events depends on the frame of reference results
from the properties of space and time itself, rather than from anything specifically about electromagnetism.

5.6 | Relativistic Velocity Transformation

Learning Objectives

By the end of this section, you will be able to:

• Derive the equations consistent with special relativity for transforming velocities in one inertial
frame of reference into another.

• Apply the velocity transformation equations to objects moving at relativistic speeds.

• Examine how the combined velocities predicted by the relativistic transformation equations
compare with those expected classically.

Remaining in place in a kayak in a fast-moving river takes effort. The river current pulls the kayak along. Trying to paddle
against the flow can move the kayak upstream relative to the water, but that only accounts for part of its velocity relative to
the shore. The kayak’s motion is an example of how velocities in Newtonian mechanics combine by vector addition. The
kayak’s velocity is the vector sum of its velocity relative to the water and the water’s velocity relative to the riverbank.
However, the relativistic addition of velocities is quite different.

Velocity Transformations
Imagine a car traveling at night along a straight road, as in Figure 5.19. The driver sees the light leaving the headlights
at speed c within the car’s frame of reference. If the Galilean transformation applied to light, then the light from the car’s
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